Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 257: 114344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430670

RESUMO

Dietary patterns provide a comprehensive assessment of food consumption, including essential nutrients and potential exposure to environmental contaminants. While pro-vegetarian (PVG) dietary patterns have shown health benefits in adults, their effects on children are less well studied. This study aims to explore the association between children's adherence to the most common PVG dietary patterns and their exposure to metals, assessed through urine concentration. In our study, we included a population of 723 children aged 4-5-years from the INfancia y Medio Ambiente (INMA) cohort in Spain. We calculated three predefined PVG dietary patterns, namely general (gPVG), healthful (hPVG), and unhealthful (uPVG), using dietary information collected through a validated Food Frequency Questionnaire. Urinary concentrations of various essential and heavy metals (Co, Cu, Zn, Se, Mo, Pb, and Cd) were measured using mass spectrometry. Additionally, urinary arsenic speciation, including arsenobetaine (AsB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and inorganic arsenic (iAs), was measured. The sum of urinary MMA and iAs was used to assess iAs exposure. We estimated primary (PMI) and secondary iAs methylation (SMI) indices. To explore the association between PVG dietary patterns in quintiles and metal exposure, we utilized multiple-adjusted linear regression models and the quantile g-computation approach. Compared with the lowest quintile, participants in the highest quintile of gPVG showed a 22.7% lower urinary Co (95% confidence interval (CI): -38.7; -1.98) and a 12.6% lower Se (95%CI: -22.9; -1.00) concentrations. Second quintile of adherence to hPVG was associated with a 51.7% lower urinary iAs + MMA concentrations (95%CI: -74.3; -8.61). Second quintile of adherence to an uPVG was associated with a 13.6% lower Se levels (95%CI: -22.9; -2.95) while the third quintile to this pattern was associated with 17.5% lower Mo concentrations (95%CI: -29.5; -2.95). The fourth quintile of adherence to gPVG was associated with a 68.5% higher PMI and a 53.7% lower SMI. Our study showed that adherence to a gPVG dietary pattern in childhood may modestly reduce the intakes of some essential metals such as Co and Se. Further investigations are warranted to explore any potential health implications.


Assuntos
Arsênio , Arsenicais , Metais Pesados , Criança , Adulto , Humanos , Arsênio/análise , Exposição Ambiental/análise , 60408 , Metais Pesados/análise
2.
Expo Health ; 16(1): 87-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313597

RESUMO

In Bangladesh most agronomic biomass (straw, husk, dried dung) is burnt for domestic cooking use. Consequently, the soil is continuously stripped of mineral nutrients and carbon (C) substrate. Here we investigate if recycling of household ash (ash) as fertilizer can sustainably improve soil fertility as well as minimise accumulation of toxic elements (As, Cd) in rice grain. Large scale field trials across two geographic regions (Barind, Madhupur) and two seasons (wet, dry) and with application of 3 fertiliser treatments (NPKS, ash, NPKS + ash) were conducted. At the end of each season, the impact of region*season*treatment on soil microbial comunities, rice yield, and grain quality (As, Cd, nutrient elements) was assessed. When compared to conventional field application rates of NPKS (control), application of ash boosted rice yield by circa. 20% in both regions during wet and dry season, with no effect on rice grain carcinogenic inorganic arsenic (iAs), dimethylarsonic acid (DMA) or cadmium (Cd), but with potential to increase zinc (Zn). For soil microbial communities, a significant region and season effect as well as correlation with elements in rice grain was observed, amongst these Cd, Zn, iAs and DMA. This study illustrates that application of ash can reduce the requirement for expensive chemical fertiliser, whilst at the same time increasing rice yield and maintaining grain quality, making farming in Bangladesh more sustainable and productive. The study also implies that the combined impact of region, season, and soil microbes determines accumulation of elements in rice grain. Supplementary Information: The online version contains supplementary material available at 10.1007/s12403-023-00539-y.

3.
Environ Sci Technol ; 55(12): 7757-7769, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048658

RESUMO

The Anthropocene has led to global-scale contamination of the biosphere through diffuse atmospheric dispersal of arsenic. This review considers the sources arsenic to soils and its subsequent fate, identifying key knowledge gaps. There is a particular focus on soil classification and stratigraphy, as this is central to the topic under consideration. For Europe and North America, peat core chrono-sequences record massive enhancement of arsenic depositional flux from the onset of the Industrial Revolution to the late 20th century, while modern mitigation efforts have led to a sharp decline in emissions. Recent arsenic wet and dry depositional flux measurements and modern ice core records suggest that it is South America and East Asia that are now primary global-scale polluters. Natural sources of arsenic to the atmosphere are primarily from volcanic emissions, aeolian soil dust entrainment, and microbial biomethylation. However, quantifying these natural inputs to the atmosphere, and subsequent redeposition to soils, is only starting to become better defined. The pedosphere acts as both a sink and source of deposited arsenic. Soil is highly heterogeneous in the natural arsenic already present, in the chemical and biological regulation of its mobility within soil horizons, and in interaction with climatic and geomorphological settings. Mineral soils tend to be an arsenic sink, while organic soils act as both a sink and a source. It is identified here that peatlands hold a considerable amount of Anthropocene released arsenic, and that this store can be potentially remobilized under climate change scenarios. Also, increased ambient temperature seems to cause enhanced arsine release from soils, and potentially also from the oceans, leading to enhanced rates of arsenic biogeochemical cycling through the atmosphere. With respect to agriculture, rice cultivation was identified as a particular concern in Southeast Asia due to the current high arsenic deposition rates to soil, the efficiency of arsenic assimilation by rice grain, and grain yield reduction through toxicity.


Assuntos
Arsênio , Arsênio/análise , Europa (Continente) , Ásia Oriental , América do Norte , Solo , América do Sul
4.
J Am Soc Nephrol ; 31(4): 716-730, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32111728

RESUMO

BACKGROUND: Although AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance. METHODS: To identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury. RESULTS: The gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI. CONCLUSIONS: This comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).


Assuntos
Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Restrição Calórica , Hipóxia , Precondicionamento Isquêmico/métodos , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética
5.
J Hazard Mater ; 388: 121795, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31818673

RESUMO

The effect of dissolved organic matter (DOM), derived from composted pig manure or rice straw, on arsenic methylation and subsequent biovolatilization in paddy soils was investigated. Arsine production following pig manure DOM application was 2.7- and 9.6-fold higher than that of soils treated with rice straw DOM and the control, respectively. Trimethylarsine was the dominant arsine at 54 %, followed by dimethylarsine at 22 %, arsine at 21 %, and monomethylarsine at 3 %. The copy numbers of the total and As-methylating bacteria were significantly enhanced in paddy soils treated with DOM. Pig manure DOM altered soil bacterial profile by increasing the OTU number of As methylation-inducing bacteria, such as Proteobacteria, Bacteroidetes, Geobacter, Sphingomonas, Streptomyces, and Rhodopseudomonas, thereby promoting As volatilization and methylation in paddy soils. The higher relative content of alkyl-C, N-alkyl C, and carboxyl-C in pig manure DOM was responsible for the increase in total and arsM-carrying bacteria in paddy soils, leading to enhanced As methylation. These observations will promote a better understanding of the role of DOM in mediating As methylation and volatilization, along with how organic fertilization affects straighthead disorder of rice, a condition caused by methylated arsenic species.

6.
Environ Sci Technol ; 53(7): 3451-3463, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30875469

RESUMO

The interplay between rice roots and manuring with respect to arsenic speciation, subsequent assimilation into roots, and translocation to shoots in paddy soil was investigated, alongside bacterial diversity characterization. Planting increased soil Eh and decreased soil solution arsenic species: inorganic arsenic, monomethylarsonic acid, trimethylarsenic oxide, and dimethylarsinic acid. Presence of plant roots increased the copy number of Clostridium and Tumebacillus 16S rRNA as well as Streptomyces arsenic methylating gene ( arsM), but decreased Acidobacteria_GP1 16S rRNA and Rhodopseudomonas. palustris BisB5 arsM. Sum of arsenic species decreased under root influence due to the interplay of inorganic arsenic mobilization in bulk soil under anaerobic and immobilization under oxygenated rhizospheric conditions. Manuring increased all soil solution arsenic species (>90%), shoot total arsenic (60%), copy number of Geobacter 16S rRNA, and R. palustris TIE-1 arsM, indicative of a shift towards microbes with iron reduction and oxidation as well as arsenic methylation capabilities.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Metilação , Raízes de Plantas , RNA Ribossômico 16S , Rizosfera , Solo , Microbiologia do Solo
7.
Microbiome ; 6(1): 48, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554982

RESUMO

BACKGROUND: Plants can adapt to edaphic stress, such as nutrient deficiency, toxicity and biotic challenges, by controlled transcriptomic responses, including microbiome interactions. Traditionally studied in model plant species with controlled microbiota inoculation treatments, molecular plant-microbiome interactions can be functionally investigated via RNA-Seq. Complex, natural plant-microbiome studies are limited, typically focusing on microbial rRNA and omitting functional microbiome investigations, presenting a fundamental knowledge gap. Here, root and shoot meta-transcriptome analyses, in tandem with shoot elemental content and root staining, were employed to investigate transcriptome responses in the wild grass Holcus lanatus and its associated natural multi-species eukaryotic microbiome. A full factorial reciprocal soil transplant experiment was employed, using plant ecotypes from two widely contrasting natural habitats, acid bog and limestone quarry soil, to investigate naturally occurring, and ecologically meaningful, edaphically driven molecular plant-microbiome interactions. RESULTS: Arbuscular mycorrhizal (AM) and non-AM fungal colonization was detected in roots in both soils. Staining showed greater levels of non-AM fungi, and transcriptomics indicated a predominance of Ascomycota-annotated genes. Roots in acid bog soil were dominated by Phialocephala-annotated transcripts, a putative growth-promoting endophyte, potentially involved in N nutrition and ion homeostasis. Limestone roots in acid bog soil had greater expression of other Ascomycete genera and Oomycetes and lower expression of Phialocephala-annotated transcripts compared to acid ecotype roots, which corresponded with reduced induction of pathogen defense processes, particularly lignin biosynthesis in limestone ecotypes. Ascomycota dominated in shoots and limestone soil roots, but Phialocephala-annotated transcripts were insignificant, and no single Ascomycete genus dominated. Fusarium-annotated transcripts were the most common genus in shoots, with Colletotrichum and Rhizophagus (AM fungi) most numerous in limestone soil roots. The latter coincided with upregulation of plant genes involved in AM symbiosis initiation and AM-based P acquisition in an environment where P availability is low. CONCLUSIONS: Meta-transcriptome analyses provided novel insights into H. lanatus transcriptome responses, associated eukaryotic microbiota functions and taxonomic community composition. Significant edaphic and plant ecotype effects were identified, demonstrating that meta-transcriptome-based functional analysis is a powerful tool for the study of natural plant-microbiome interactions.


Assuntos
Adaptação Fisiológica/fisiologia , Ascomicetos/crescimento & desenvolvimento , Holcus/microbiologia , Microbiota/genética , Oomicetos/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Ascomicetos/genética , Colletotrichum/genética , Colletotrichum/crescimento & desenvolvimento , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Holcus/crescimento & desenvolvimento , Micorrizas/fisiologia , Oomicetos/genética , Solo/química , Microbiologia do Solo , Transcriptoma/genética
8.
Development ; 145(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29439133

RESUMO

Genetic factors underlying the human limb abnormality congenital talipes equinovarus ('clubfoot') remain incompletely understood. The spontaneous autosomal recessive mouse 'peroneal muscular atrophy' mutant (PMA) is a faithful morphological model of human clubfoot. In PMA mice, the dorsal (peroneal) branches of the sciatic nerves are absent. In this study, the primary developmental defect was identified as a reduced growth of sciatic nerve lateral motor column (LMC) neurons leading to failure to project to dorsal (peroneal) lower limb muscle blocks. The pma mutation was mapped and a candidate gene encoding LIM-domain kinase 1 (Limk1) identified, which is upregulated in mutant lateral LMC motor neurons. Genetic and molecular analyses showed that the mutation acts in the EphA4-Limk1-Cfl1/cofilin-actin pathway to modulate growth cone extension/collapse. In the chicken, both experimental upregulation of Limk1 by electroporation and pharmacological inhibition of actin turnover led to defects in hindlimb spinal motor neuron growth and pathfinding, and mimicked the clubfoot phenotype. The data support a neuromuscular aetiology for clubfoot and provide a mechanistic framework to understand clubfoot in humans.


Assuntos
Doença de Charcot-Marie-Tooth/embriologia , Pé Torto Equinovaro/embriologia , Pé Torto Equinovaro/genética , Quinases Lim/genética , Mutação , Animais , Axônios , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Embrião de Galinha , Mapeamento Cromossômico , Pé Torto Equinovaro/patologia , Modelos Animais de Doenças , Feminino , Membro Posterior/anormalidades , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Neurônios Motores/patologia , Músculo Esquelético/anormalidades , Músculo Esquelético/inervação , Nervo Fibular/anormalidades , Fenótipo , Gravidez , Receptor EphA4/deficiência , Receptor EphA4/genética , Nervo Isquiático/anormalidades , Regulação para Cima
9.
Peptides ; 96: 20-30, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28870797

RESUMO

STC-1 is a heterogeneous plurihormonal cell line producing several prominent gut peptide hormones. pGIP/Neo is a genetically selected sub-clone of STC-1 with augmented levels of glucose-dependent insulinotropic peptide (GIP). Morphometric parameters, hormone concentrations, mRNA transcripts, hormone immunocytochemistry and nutrient utilisation/production of these two cell lines were compared. Proglucagon-derived peptides (Glucagon-like peptide-1 (GLP-1) and - 2(GLP-2)) were lower in sub-clone cells than progenitor cells. High Content Analysis found altered intracellular GLP-1, GIP, cholecystokinin (CCK) and peptide YY (PYY) levels and differing hormone co-localisation. The proportion pGIP/Neo cells containing GIP immunoreactivity (82%) was greater than STC-1 (65%), as were the proportion with 'GIP only', 'GLP-1+GIP' or 'GIP+PYY' immunoreactivity. Most surprisingly mRNA transcripts of the proglucagon and GIP genes were inversely correlated to the levels of their translated peptides. This strongly suggests that proglucagon and GIP are encoded on 'translationally regulated genes' - a characteristic possessed by other endocrine hormones. Metabolomic profiling revealed differences in cellular nutrient utilisation/production and that under normal culture conditions both cell lines exhibit signs of overflow metabolism. These studies provide an insight into the metabolism and properties of these valuable cells, suggesting for the first time that incretin hormone genes are translationally regulated.


Assuntos
Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo YY/metabolismo , Linhagem Celular , Colecistocinina/metabolismo , Hormônios Gastrointestinais/metabolismo , Humanos , Proglucagon/metabolismo
10.
Nucleic Acids Res ; 45(5): 2571-2584, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27956500

RESUMO

Conflicts between replication and transcription challenge chromosome duplication. Escherichia coli replisome movement along transcribed DNA is promoted by Rep and UvrD accessory helicases with Δrep ΔuvrD cells being inviable under rapid growth conditions. We have discovered that mutations in a tRNA gene, aspT, in an aminoacyl tRNA synthetase, AspRS, and in a translation factor needed for efficient proline-proline bond formation, EF-P, suppress Δrep ΔuvrD lethality. Thus replication-transcription conflicts can be alleviated by the partial sacrifice of a mechanism that reduces replicative barriers, namely translating ribosomes that reduce RNA polymerase backtracking. Suppression depends on RelA-directed synthesis of (p)ppGpp, a signalling molecule that reduces replication-transcription conflicts, with RelA activation requiring ribosomal pausing. Levels of (p)ppGpp in these suppressors also correlate inversely with the need for Rho activity, an RNA translocase that can bind to emerging transcripts and displace transcription complexes. These data illustrate the fine balance between different mechanisms in facilitating gene expression and genome duplication and demonstrate that accessory helicases are a major determinant of this balance. This balance is also critical for other aspects of bacterial survival: the mutations identified here increase persistence indicating that similar mutations could arise in naturally occurring bacterial populations facing antibiotic challenge.


Assuntos
Replicação do DNA , Escherichia coli/genética , Genoma Bacteriano , Elongação Traducional da Cadeia Peptídica , DNA Helicases/genética , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , RNA de Transferência de Ácido Aspártico/genética , Supressão Genética , Aminoacilação de RNA de Transferência
11.
Avian Pathol ; 45(6): 616-629, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27215546

RESUMO

Runting-stunting syndrome (RSS) in broiler chickens is an enteric disease that causes significant economic losses to poultry producers worldwide due to elevated feed conversion ratios, decreased body weight during growth, and excessive culling. Of specific interest are the viral agents associated with RSS which have been difficult to fully characterize to date. Past research into the aetiology of RSS has implicated a wide variety of RNA and DNA viruses however, to date, no individual virus has been identified as the main agent of RSS and the current opinion is that it may be caused by a community of viruses, collectively known as the virome. This paper attempts to characterize the viral pathogens associated with 2-3-week-old RSS-affected and unaffected broiler chickens using next-generation sequencing and comparative metagenomics. Analysis of the viromes identified a total of 20 DNA and RNA viral families, along with 2 unidentified categories, comprised of 31 distinct viral genera and 7 unclassified genera. The most abundant viral families identified in this study were the Astroviridae, Caliciviridae, Picornaviridae, Parvoviridae, Coronaviridae, Siphoviridae, and Myoviridae. This study has identified historically significant viruses associated with the disease such as chicken astrovirus, avian nephritis virus, chicken parvovirus, and chicken calicivirus along with relatively novel viruses such as chicken megrivirus and sicinivirus 1 and will help expand the knowledge related to enteric disease in broiler chickens, provide insights into the viral constituents of a healthy avian gut, and identify a variety of enteric viruses and viral communities appropriate for further study.


Assuntos
Avastrovirus/genética , Galinhas/virologia , Transtornos do Crescimento/veterinária , Metagenômica , Parvovirus/genética , Doenças das Aves Domésticas/virologia , Animais , Avastrovirus/classificação , Galinhas/crescimento & desenvolvimento , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Biblioteca Gênica , Genoma Viral/genética , Transtornos do Crescimento/patologia , Transtornos do Crescimento/virologia , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Parvovirus/classificação , Doenças das Aves Domésticas/patologia , RNA Viral/genética , Análise de Sequência de DNA/veterinária
12.
PLoS Genet ; 10(2): e1004110, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516400

RESUMO

Biogenesis of mammalian mitochondrial ribosomes requires a concerted maturation of both the small (SSU) and large subunit (LSU). We demonstrate here that the m(5)C methyltransferase NSUN4, which forms a complex with MTERF4, is essential in mitochondrial ribosomal biogenesis as mitochondrial translation is abolished in conditional Nsun4 mouse knockouts. Deep sequencing of bisulfite-treated RNA shows that NSUN4 methylates cytosine 911 in 12S rRNA (m5C911) of the SSU. Surprisingly, NSUN4 does not need MTERF4 to generate this modification. Instead, the NSUN4/MTERF4 complex is required to assemble the SSU and LSU to form a monosome. NSUN4 is thus a dual function protein, which on the one hand is needed for 12S rRNA methylation and, on the other hand interacts with MTERF4 to facilitate monosome assembly. The presented data suggest that NSUN4 has a key role in controlling a final step in ribosome biogenesis to ensure that only the mature SSU and LSU are assembled.


Assuntos
Proteínas de Transporte/genética , Metiltransferases/genética , Mitocôndrias/genética , RNA Ribossômico/genética , Ribossomos/genética , Animais , Proteínas de Transporte/metabolismo , Metilação de DNA/genética , Metiltransferases/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ligação Proteica , RNA Ribossômico/biossíntese , Ribossomos/ultraestrutura , Fatores de Transcrição/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(6): 2379-84, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24464483

RESUMO

Rice (Oryza sativa) cultivar Azucena--belonging to the Japonica subspecies--exudes high strigolactone (SL) levels and induces high germination of the root parasitic plant Striga hermonthica. Consistent with the fact that SLs also inhibit shoot branching, Azucena is a low-tillering variety. In contrast, Bala, an Indica cultivar, is a low-SL producer, stimulates less Striga germination, and is highly tillered. Using a Bala × Azucena F6 population, a major quantitative trait loci--qSLB1.1--for the exudation of SL, tillering, and induction of Striga germination was detected on chromosome 1. Sequence analysis of the corresponding locus revealed a rearrangement of a 51- to 59-kbp stretch between 28.9 and 29 Mbp in the Bala genome, resulting in the deletion of two cytochrome P450 genes--SLB1 and SLB2--with high homology to the Arabidopsis SL biosynthesis gene, MAX1. Both rice genes rescue the Arabidopsis max1-1 highly branched mutant phenotype and increase the production of the SL, ent-2'-epi-5-deoxystrigol, when overexpressed in Bala. Furthermore, analysis of this region in 367 cultivars of the publicly available Rice Diversity Panel population shows that the rearrangement at this locus is a recurrent natural trait associated with the Indica/Japonica divide in rice.


Assuntos
Deleção de Genes , Variação Genética , Lactonas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Cromossomos de Plantas , Genes de Plantas , Dados de Sequência Molecular , Oryza/genética , Locos de Características Quantitativas
14.
New Phytol ; 201(1): 144-154, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24102375

RESUMO

The aim of this study was to characterize the transcriptome of a balanced polymorphism, under the regulation of a single gene, for phosphate fertilizer responsiveness/arsenate tolerance in wild grass Holcus lanatus genotypes screened from the same habitat. De novo transcriptome sequencing, RNAseq (RNA sequencing) and single nucleotide polymorphism (SNP) calling were conducted on RNA extracted from H. lanatus. Roche 454 sequencing data were assembled into c. 22,000 isotigs, and paired-end Illumina reads for phosphorus-starved (P-) and phosphorus-treated (P+) genovars of tolerant (T) and nontolerant (N) phenotypes were mapped to this reference transcriptome. Heatmaps of the gene expression data showed strong clustering of each P+/P- treated genovar, as well as clustering by N/T phenotype. Statistical analysis identified 87 isotigs to be significantly differentially expressed between N and T phenotypes and 258 between P+ and P- treated plants. SNPs and transcript expression that systematically differed between N and T phenotypes had regulatory function, namely proteases, kinases and ribonuclear RNA-binding protein and transposable elements. A single gene for arsenate tolerance led to distinct phenotype transcriptomes and SNP profiles, with large differences in upstream post-translational and post-transcriptional regulatory genes rather than in genes directly involved in P nutrition transport and metabolism per se.


Assuntos
Arseniatos/farmacologia , Arsênio/farmacologia , Regulação da Expressão Gênica de Plantas , Holcus/genética , Fósforo/metabolismo , Polimorfismo de Nucleotídeo Único , Transcriptoma/genética , Adaptação Fisiológica/genética , Sequência de Bases , Expressão Gênica , Genes de Plantas , Genótipo , Holcus/metabolismo , Fenótipo , Fosfatos/metabolismo , RNA de Plantas , Análise de Sequência de RNA , Estresse Fisiológico/genética
15.
Physiol Genomics ; 45(20): 940-7, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23964023

RESUMO

Berlin high (BEH) and Berlin low (BEL) strains selected for divergent growth differ threefold in body weight. We aimed at examining muscle mass, which is a major contributor to body weight, by exploring morphological characteristics of the soleus muscle (fiber number and cross sectional area; CSA), by analyzing the transcriptome of the gastrocnemius and by initiating quantitative trait locus (QTL) mapping. BEH muscles were four to eight times larger than those of BEL. In substrain BEH+/+, mutant myostatin was replaced with a wild-type allele; however, BEH+/+muscles still were two to four times larger compared with BEL. BEH soleus muscle fibers were two times more numerous (P < 0.0001) and CSA was two times larger (P < 0.0001) compared with BEL. In addition, soleus femoral attachment anomaly (SFAA) was observed in all BEL mice. One significant (Chr 1) and four suggestive (Chr 3, 4, 6, and 9) muscle weight QTLs were mapped in a 21-day-old F2 intercross (n = 296) between BEH and BEL strains. The frequency of SFAA incidence in the F2 and in the backcross to BEL strain (BCL) suggested the presence of more than one causative gene. Two suggestive SFAA QTLs were mapped in BCL; however, their peak markers were not associated with the phenotype in F2. RNA-Seq analysis revealed 2,148 differentially expressed (P < 0.1) genes and 45,673 single nucleotide polymorphisms and >2,000 indels between BEH+/+ and BEL males. In conclusion, contrasting muscle traits and genomic and gene expression differences between BEH and BEL strains provide a promising model for the search for genes involved in muscle growth and musculoskeletal morphogenesis.


Assuntos
Genômica , Sistema Musculoesquelético/metabolismo , Alelos , Animais , Cruzamentos Genéticos , Feminino , Perfilação da Expressão Gênica , Genótipo , Membro Posterior/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Genéticos , Tamanho do Órgão/genética , Locos de Características Quantitativas/genética
16.
PLoS Genet ; 9(7): e1003651, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935515

RESUMO

Dietary restriction (DR) extends lifespan in a wide variety of species, yet the underlying mechanisms are not well understood. Here we show that the Caenorhabditis elegans HNF4α-related nuclear hormone receptor NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. nhr-62 mediates the longevity of eat-2 mutants, a genetic mimetic of dietary restriction, and blunts the longevity response of DR induced by bacterial food dilution at low nutrient levels. Metabolic changes associated with DR, including decreased Oil Red O staining, decreased triglyceride levels, and increased autophagy are partly reversed by mutation of nhr-62. Additionally, the DR fatty acid profile is altered in nhr-62 mutants. Expression profiles reveal that several hundred genes induced by DR depend on the activity of NHR-62, including a putative lipase required for the DR response. This study provides critical evidence of nuclear hormone receptor regulation of the DR longevity response, suggesting hormonal and metabolic control of life span.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Restrição Calórica , Fator 4 Nuclear de Hepatócito/genética , Longevidade/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Autofagia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Graxos/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Mutação , Transdução de Sinais
17.
PLoS One ; 8(8): e72317, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951309

RESUMO

The host genotype has been proposed to contribute to individually composed bacterial communities in the gut. To provide deeper insight into interactions between gut bacteria and host, we associated germ-free C3H and C57BL/10 mice with intestinal bacteria from a C57BL/10 donor mouse. Analysis of microbiota similarity between the animals with denaturing gradient gel electrophoresis revealed the development of a mouse strain-specific microbiota. Microarray-based gene expression analysis in the colonic mucosa identified 202 genes whose expression differed significantly by a factor of more than 2. Application of bioinformatics tools demonstrated that functional terms including signaling/secretion, lipid degradation/catabolism, guanine nucleotide/guanylate binding and immune response were significantly enriched in differentially expressed genes. We had a closer look at the 56 genes with expression differences of more than 4 and observed a higher expression in C57BL/10 mice of the genes coding for Tlr1 and Ang4 which are involved in the recognition and response to gut bacteria. A higher expression of Pla2g2a was detected in C3H mice. In addition, a number of interferon-inducible genes were higher expressed in C3H than in C57BL/10 mice including Gbp1, Mal, Oasl2, Ifi202b, Rtp4, Ly6g6c, Ifi27l2a, Usp18, Ifit1, Ifi44, and Ly6g indicating that interferons may play an essential role in microbiota regulation. However, genes coding for interferons, their receptors, factors involved in interferon expression regulation or signaling pathways were not differentially expressed between the two mouse strains. Taken together, our study confirms that the host genotype is involved in the establishment of host-specific bacterial communities in the gut. Based on expression differences after colonization with the same bacterial inoculum, we propose that Pla2g2a and interferon-dependent genes may contribute to this phenomenon.


Assuntos
Colo/metabolismo , Expressão Gênica , Fosfolipases A2 do Grupo II/genética , Interferons/genética , Mucosa Intestinal/metabolismo , Simbiose/genética , Animais , Colo/imunologia , Colo/microbiologia , Fosfolipases A2 do Grupo II/imunologia , Especificidade de Hospedeiro , Interferons/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Microbiota/genética , Microbiota/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade da Espécie , Simbiose/imunologia
18.
Cell Metab ; 17(4): 618-26, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23562081

RESUMO

Mitochondrial transcription termination factor 1, MTERF1, has been reported to couple rRNA gene transcription initiation with termination and is therefore thought to be a key regulator of mammalian mitochondrial ribosome biogenesis. The prevailing model is based on a series of observations published over the last two decades, but no in vivo evidence exists to show that MTERF1 regulates transcription of the heavy-strand region of mtDNA containing the rRNA genes. Here, we demonstrate that knockout of Mterf1 in mice has no effect on mitochondrial rRNA levels or mitochondrial translation. Instead, loss of Mterf1 influences transcription initiation at the light-strand promoter, resulting in a decrease of de novo transcription manifested as reduced 7S RNA levels. Based on these observations, we suggest that MTERF1 does not regulate heavy-strand transcription, but rather acts to block transcription on the opposite strand of mtDNA to prevent transcription interference at the light-strand promoter.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , RNA Ribossômico/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , DNA Mitocondrial/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , Regiões Promotoras Genéticas , Ligação Proteica , RNA de Transferência/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Iniciação da Transcrição Genética
19.
BMC Genomics ; 13: 592, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23126637

RESUMO

BACKGROUND: We have recently identified a number of Quantitative Trait Loci (QTL) contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA) muscle of each strain by RNA-Seq. RESULTS: 13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN). The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10) residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs) underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p<0.03). CONCLUSION: Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.


Assuntos
Genoma , Músculo Esquelético/metabolismo , Locos de Características Quantitativas , Animais , Teorema de Bayes , Quinases Associadas a Receptores de Interleucina-1/genética , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , RNA/genética , Análise de Sequência de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...